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Abstract
The ecosystem response to fire is often linked to fire severity
and recurrence, with potentially large consequences on both
aboveground and below–ground processes. Understanding
the fire impact has become increasingly important in the light of
recent changes to disturbance regimes due to climate change.
Although the impacts on the above vegetation and the below
soil physical and chemical properties are well documented, it
remains unclear how fire affects the fine-scale microorgan-
isms. Microbial communities are responsible for driving
essential ecosystem processes and particularly sensitive to
changes induced in soil quality by wildfire or prescribed fire
disturbances. This work is a review of the last three years’
literature, dealing with the fire impact on mass, activity, and
diversity of soil microorganisms from soil A horizon.
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Introduction
Wildfire is the primary abiotic disturbance in forest eco-
systems and closely linked to deforestation. The histor-
ical fire regimes, partly due to global changes (climate
changes, land use and land cover changes, social
changes), have been replaced by larger fires known as
‘megafires’ or extreme fires [1]. More than 30% of the
www.sciencedirect.com
land surface has a significant fire frequency, the distri-
bution of population and land cover, especially the pro-
portion of cropland and grassland areas, being of vital
importance [2]. Global change influences key factors that
determine fire regimes, namely biomass growth, fuel
availability, fire weather, and ignitions [3]. The extreme
fires are the result of the more extreme conditions, high
fuel availability, low humidity, high temperature, and

high wind speed [4] and can have catastrophic damages
on watereplantesoil systems and the loss of human lives
[5]. The complexity of the phenomenon and the severe
impact of the fires required an integrated fire manage-
ment approach [6]. Themost obvious impact of a wildfire
is the loss of vegetation, but in addition, the soil
ecosystem is also severely affected by the fire provoking
its degradation and hence the loss of soil quality. The
different soil properties (physical, chemical, and biolog-
ical) are affected differently depending mainly on fire
severity, which relates to the environmental factors

involved in the combustion processes: quantity, nature,
and moisture of the dead and living combustible, wind
speed, and site topography [7e9].

Soil microorganisms are key components of the edaphic
ecosystem because they drive 80e90% of the soil pro-
cess and being the main responsible agents of the soil
fertility and quality [10]. The impact of the fire on the
soil microorganisms will determine in great extent the
postfire soil recovery. This impact can be analyzed with
different methods, from the classic number of the viable

cell counting to the determination of several parameters
related to its biomass, activity, and diversity [11]. Pre-
vious reviews have described a decrease in microbial
biomass after a fire event [7,12], with a higher impact on
the fungal biomass [13], and its recovery may require
months or even years. Long-term shifts in the compo-
sition of ectomycorrhizal fungal communities have been
described after wildfires and prescribed fires [14]. The
fire impact on soil and the following postfire recovery of
the microbiota can differ depending on the fire recur-
rence. For example, a decrease in ectomycorrhizal fungal

diversity [15] or alteration of the microbial community
structure and no effect on microbial biomass [16] have
been described as a consequence of changes in the fire
recurrence.

The evaluation of fire impacts on microbial properties
requires the comparison of the burnt soil with the
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2 Environmental impact assessment: Fire. Prevention, management and challenges
corresponding unburnt soil, being necessary to separate
the fire effects to those due to the influence on envi-
ronmental conditions (spatial and temporal variation)
[11]. Recently, different reviews have addressed the
impact of fire on soil physicochemical properties
[17,18], vegetation, soil, hydrology, and geomorphology
[19], the effect on sediment and nutrient exports [20],
and wildfire impacts on postfire soil management [21].

The fire impact on the soil microbial biomass, activity,
and diversity under different climate has been studied
during the last years, but, to our knowledge, only in
2018, a meta-analysis study that reveals contrasting re-
sponses of soil microorganisms and mesofauna to fire has
been reported [22].

Microbial soil properties can experience immediate,
short-term, medium-term, and long-term or permanent
fire-induced changes depending chiefly on the type of
property, severity, and frequency of fires and postfire

climate conditions. Fires affect living organisms
directly (causing their death) and indirectly, trans-
forming their living environment (affecting food avail-
ability and quantity, heterogeneity of the environment,
and pH increase). The direct effects are evaluated
immediately after the fire (before first rain events,
<1e3 months) and the indirect ones at a short term
(1e3 months to 1 year), medium term (1e3 months to
Figure 1

Fire-induced changes on different microbial parameters over the tim
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3e5 years), and long term (>3e5 years) [23,24*]] (see
Figure 1).
Fire immediate impacts
The direct fire impact on soil microorganisms depends
on the fire severity, in other words, on the temperature
reached and its duration during the heating as well as
the initial soil moisture [7]. However, most studies
about wildfire impacts do not take into account these
factors in the data interpretation because these data can
only be recorded under control conditions. Recently,
laboratory studies demonstrated clearly that the initial
water content [25] and fire severity (temperature, time)

are determinant factors in the response of microbial
communities to soil heating treatments. The soil heat-
ing at high temperatures (>120 �C) provokes negative
effects and/or the death of soil microorganisms. The
effect of fire on microbiota is not the same for all the
microbial groups. In general, studies of several authors
have shown that fungi and microorganisms of the C
cycle are more sensitive to heat than bacteria and mi-
croorganisms of the N cycle [8,11,23] (Figure 1).

An immediate fire negative impact on properties related

to mass, activity, and diversity of microorganism has
been recently reported (Tables 1 and 2). As expected,
the magnitude of this effect was inversely correlated
e. Modified from Bárcenas-Moreno and Díaz Raviña (2013) [23].
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Table 1

Summary of results from the reviewed articles concerning the fire effects on soil properties of samples taken mainly in the 0–5 cm of the A horizon top layer (part 1).

Fire type/ecosystem/climate Time after fire Microbial parameter Change (respect to unburned) Reference

Wildfires
Forest/Mediterranean

climate
3 days/10 months Enzyme activities: Acid and alkaline

phosphatases, arylsulfatase, beta-
glucosidase, and leucine-
aminopeptidase

Decrease, recover after 10
months

Borgogni et al., 2019 [24*]

Bacterial and fungal communities (DNA) Decrease, recover after 10
months

Microbial biomass None
Peatland/equatorial climate 14/28 days Soil respiration Decrease Wasis et al., 2019 [32]

Viable cells (plate counting) Decrease
Conifer catchment/alpine

climate
18 days Enzyme activities: Fairbanks et al., 2020 [27**]

a-glucosidase, b-xylosidase, leucine-
aminopeptidase, acid phosphatase

None

b-1,4-glucosidase, b–D-
cellobiohydrolase, b-1,4,N-
acetylglucosaminidase

Decrease

Pine forest/Mediterranean
climate

1 month/1–3 years Viable bacteria and fungi (plate counting) Increase Rodriguez et al., 2018 [31*]
Bacterial diversity (DNA) Decrease (recovery 1 year)
Soil respiration (SIR) Increase
Enzyme activities: glucosidase, cellulase,

invertase, urease, b-N-
acetylglucosaminidase, acid and
alkaline phosphatases

None/increase (phosphatase)

Forest and shrubs/
Mediterranean and
temperate climate

2 months Richness and diversity of bacterial
communities (DNA)

Decrease Sáenz et al., 2020 [38]

Wetland/subtropical wet
climate

2 months Microbial biomass (PLFA) Increase (decrease in Fungi) Zhang et al., 2019 [36]
Microbial C utilization (CLPP) Increase

Forest/temperate monsoon
climate

6 months Bacterial and fungal richness, diversity
(DNA)

Decrease (fungi more sensitive) Qin and Liu, 2021 [39]

Forest/temperate oceanic
climate

1 year Bacterial and fungal communities (DNA) Change in structure, bigger
impact in bacteria than in
fungi

Brown et al., 2019 [40**]

Forest/boreal climate 1 year Fungal richness and diversity (DNA) Decrease Day et al., 2019 [41*]
Wetland/semiarid climate 1/2 years Enzyme activities: invertase, urease,

catalase
Decrease Semenenko et al., 2020 [35]

Oak-pine forest/humid
subtropical climate

1/14 years Enzyme activities: cellobiohydrolase, b-
glucosidase, leucine aminopeptidase,
phenol oxidase, peroxidase, urease

None/decrease (urease)/
increase phenol oxidase

Huffman and Madritch, 2018 [33]

Soil respiration Decrease (1 year)
Bacterial and fungal diversity (DNA) Decrease

Pine forest/semiarid climate 2 years Soil respiration Decrease Allam et al., 2020 [34]
Microbial biomass (SIR) Decrease

Pine forest/semiarid climate 3 years Viable bacteria and fungi (plate counting) Decrease in bacteria Olejniczak et al., 2019 [48]
Forest/boreal climate 3 years Fungi/bacteria (DNA) None Zhou et al., 2019 [49]

(continued on next page)
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with the fire severity. A decrease in the enzyme activ-
ities one [26], three [24*], and eighteen days [27**]
after a prescribed fire or wildfires was found. Laboratory
soil heating experiments showed a decrease in the
bacterial activity [25], as well as in the enzymatic ac-
tivity and the viable N-fixing bacteria [28], but a slight
increase the microbial C utilization [16*] after the
heating. Likewise, Armas-Herrera et al. (2018) [26]

found that the microbial biomass and soil respiration
decreased immediately after a prescribed fire. Under
laboratory conditions, soil heating at high temperatures
reduced notably microbial biomass [16*,25,28], whereas
no effect was detected at low temperatures (50 �C).
With respect to the diversity of soil microorganisms,
Borgogni et al. (2019) [24*], observed that bacterial and
fungal diversity decreased three days after a wildfire.
Under laboratory conditions, changes in the bacterial
composition after low heating temperatures (<100 �C)
[29] and in microbial community structure at high

temperatures (150 �C - 400 �C) [16*] were observed.
No legacy impact of fire was detected on the fungi
associated with pine trees [30].
Fire short-term impacts
After the initial microbial activity decrease, the sur-
viving microorganisms (resistant to high tempera-
tures) favored by postfire conditions grow rapidly
using as substrate the labile C and nutrients derived
from the dead microorganisms (sensitive to high

temperatures). Thus, in principle, a rapid increase in
the microbial activity, which is inversely related to the
fire severity, can be observed at a very short term. This
increase is transitory and tends to disappear when the
availability of C and nutrients decreased. In some
cases, this behavior is not to be observed, and low
microbial activity values were found after high severity
fires. Therefore, variable results can be observed
depending on fire severity, postfire conditions, and
time passed after the fire event (Tables 1 and 2).
Thus, although the study of Rodrı́guez et al. (2018)

[31*] has shown an enhanced soil respiration one
month after a wildfire, other authors found that soil
respiration values decreased around one month [32] or
even one [33] or two years [34] after a wildfire event,
as well as the enzymatic activity can be negatively
affected two years after a wildfire [35].

A reduced microbial biomass is observed at the short
term as consequence of wildfire or prescribed
fire impact (Tables 1 and 2). This fact is attributed to
the abundance of the two main decomposer microbial

groups (fungi and bacteria) because under postfire
conditions, fungi, which contribute more to biomass
than bacteria, are not favored. In accordance with this, in
tropical climate, it was found that bacterial biomass
increased 1e2 months after a wildfire, whereas fungal
biomass decreased [32,36]. Likewise, it was observed
www.sciencedirect.com
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Table 2

Summary of results from the reviewed articles (part 2).

Fire type/ecosystem/climate Time after fire Microbial parameter Change (respect to unburned) Reference

Prescribed fires
Shrubland/mountain climate 1 day/1–5 years Microbial biomass C Decrease (recovery after 5 years) Armas-Herrera et al., 2018 [26]

Enzyme activities (b-D-
glucosidase, acid
phosphatase), soil respiration

Decrease

Forest/Mediterranean climate 2/6 months C-substrate utilization Increase Moya et al., 2020 [43]
Pinus plantation/subtropical climate 1 year Bacterial fungal diversity None Wang et al., 2019; 2020 [37,42]

Bacterial– fungal relative
abundance

Shift

Microbial biomass C Decrease
Larch forest/boreal climate 3 years Microbial diversity and richness Decrease Kang and Park, 2019 [51]
Shrubland/Mediterranean climate 4 years Fungal community composition Decrease mycorrhizal fungi Castaño et al., 2020 [52]
Shrubland/temperate climate 4 years Microbial biomass (PLFA) Decrease Díaz-Raviña et al., 2018 [47]

Enzyme activities (b-
glucosidase)

None

Enzyme activities (urease) Decrease
Microbial biomass C Decrease
Soil respiration Decrease
Bacterial growth None

Pine forest/semiarid climate 15 years Ectomycorrhizal fungi None Hart et al., 2018 [53]
Controlled experiments
Arable land/humid continental climate

(laboratory heating, degree-hour
method)

1 day Enzyme activities: catalase,
dehydrogenase

Decrease Kazeev et al., 2020 [28]

Microbial biomass Decrease
Viable N fixing bacteria Decrease

Pine forest/temperate climate (laboratory
heating under different soil water
content, degree-hour method)

1 day/1 month Microbial biomass Decrease Barreiro et al., 2020 [25]
Bacterial activity Decrease

Shrubland/temperate climate (laboratory
heating, severity and recurrence,
degree-hour method)

1 day/2 months Microbial C utilization (CLPP) None/increase (soil specific) Lombao et al., 2020 [16*]
Microbial biomass (PLFA) Decrease
Microbial community structure

(PLFA)
Shift

Pine forest/Mediterranean climate (heating
of soil monoliths)

7 days Microbial biomass None Lucas-Borja et al., 2019 [29]
Bacterial composition Modified

Pine forest/boreal climate (greenhouse) 1 year Fungal communities associated
to pines

None Beck et al., 2020 [30]

Postfire management
Forest/temperate climate (mulch material

amendment)
2 months Bacterial activity Increase (straw)/decrease (initial with eucalyptus) Barreiro et al., 2016 [44]

Fungal activity, soil respiration Increase/none (coconut fiber)
Microbial biomass Increase (fungi)

Forest/Mediterranean climate (logging) 6 months N cycling bacteria abundance Decrease Pereg et al., 2018 [45]
Grassland/continental climate (fertilizer

application after yearly prescribed fire)
1 year Bacterial and fungal biomass None Carson and Zeglin, 2018 [54]

Bacterial community
composition

Decrease/increase (specific phyla)
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6 Environmental impact assessment: Fire. Prevention, management and challenges
that the total microbial biomass decreased one month
after fire in a soil under Mediterranean climate [24*]
and two years after a wildfire in an Algerian forest [34].
Prescribed fire had also a negative effect on the micro-
bial biomass one year after the fire [37].

The microbial diversity is very sensitive to the short-
term impact of the fire (Tables 1 and 2). Saenz et al.

(2020) [38] observed that fire severity triggers a
reduction in the diversity of soil bacterial communities
of three different Mediterranean ecosystems that per-
sists two months after the fire. Qin and Liu (2021) [39]
showed that bacterial and fungal richness and diversity
decreased six months after the fire, with the fungi
being more sensitive to fire than bacteria. In contrast,
Brown et al. (2019) [40**] also detected an impact on
the bacterial and fungal communities one year after the
fire, the effect being more pronounced for bacteria than
for fungi. In the boreal forest of Canada, a reduced

richness and diversity of fungal soil communities was
observed one year after the fire [41*]. A shift in the
abundance of fungi and bacterial but not in the bac-
terial and fungal diversity was detected one year after a
prescribed fire [42]. An increased physiological di-
versity, measured by the C utilization pattern, was
observed two months after a wildfire [36] or a pre-
scribed fire [43]. Soil microbial communities can be
also affected by different postfire management prac-
tices such as seeding and mulching treatments. The
short-term amendment of mulching material to burn

soil increased the bacterial and fungal activity and
favored the fungal biomass [44]. The postfire salvage
logging practices decreased the N cycling bacteria
abundance [45].
Fire medium- and long-term impacts
The negative effects of the fire on the microbial com-
munities observed in the short term can be reduced
with time until the microbial parameters reach the
prefire values (soil recovery) or can persist in the
medium term and long term, and hence, the microbial
parameters exhibited lower values than those in the
unburnt control soil (Figure 1). The soil recovery pro-
cess depends on the severity of the fire, the resilience of
the soil, and the postfire conditions. After the impact of
low- or moderate-severity fires, in areas where the
vegetation that fixes the soil and provides C and nutri-

ents has been regenerated, the impact of fire may
disappear after 1 or 2 years. However, when indirect soil
effects persist and long-term C and nutrient availability
has dramatically decreased (drastic modifications of the
content and composition of organic matter that
present a predominance of the recalcitrant fractions over
the labile ones), in other words, in high-severity fires
with a slow regeneration of the vegetation or in areas
susceptible to postfire erosion, a negative effect of fire
on soil microorganisms is observed. The negative effects
Current Opinion in Environmental Science & Health 2021, 22:100264
can persist even 5e10 years after the fire, and the sit-
uation can be irreversible; therefore, soil recovery will
not take place [8,23].

Field studies concerning the medium- and long-term
impact of wildfires and prescribed fires on microbial
properties (mass, activity, and diversity) are scarce and
show divergent results (Tables 1 and 2). Fernandez-

Garcı́a et al. (2020) [46*] analyzed the fire impact four
years after wildfires in pine ecosystems along a Medi-
terraneanetransitioneoceanic climatic gradient and
found that enzymatic activities can be negatively or
positively affected depending on the environmental
conditions. The negative impact of prescribed fires has
been described four and five years after the fire for the
soil respiration and for the urease, b-glucosidase, and
acid phosphatase enzymatic activities [26,47] in shrub-
lands. Similarly, a decrease in the bacterial growth was
detected four years after a prescribed fire [47]. The

microbial biomass in the medium term can increase or
decrease depending on the specific environmental
conditions [46*], but in general, the values recovered in
the long term (Tables 1 and 2). Inconsistent results
concerning the soil microbial biomass were observed by
different authors 3e5 years after wildfires or prescribed
fires [26,47e49]. On the long term, soil microbial
biomass can be recovered, as indicated by Cavard et al.
(2019) [50] fifty years after the fire in a boreal forest.

Regarding the impact of fire on the soil microbial di-

versity, it can persist at the medium term and long term
(Tables 1 and 2). In the medium term, Kang and Park
(2019) [51] detected a decrease in the microbial di-
versity and richness three years after a prescribed fire,
with an increase in the relative amounts of b-proteo-
bacteria and firmicutes and a decrease in acidobacteria.
The fungal community diversity is also affected in the
medium term. Castaño et al. (2020) [52] observed a
decrease of the relative abundance of ectomycorrhizal
species four years after a medium-severity prescribed
fire. In the long term, a decrease in the bacterial and
fungal diversity was found 14 years after a wildfire [33].

However, other studies did not find differences in the
fungi/bacteria ratio of a permafrost soil at the
medium term and long term after a wildfire [49] or in
the ectomycorrhizal fungal diversity in a pine forest 15
years after a prescribed fire [53]. As consequence of the
combination of long practices of prescribed burning and
application of fertilizer, no effects on the bacterial and
fungal biomass and changes in specific phyla of the
bacterial community composition were observed [54].
Conclusions and prospects
The fire impact on soil microorganisms and the subse-
quent soil recovery depends on different factors such as
the fire severity, the soil resilience, and the environ-
mental conditions. The current situation of climate
www.sciencedirect.com
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change favors more extreme environmental conditions
(high fuel availability, low humidity, high temperatures,
and high wind speed) that shift the fire regimes to more
severe fires with large impact on the soil microorganisms.
During the last two years, several studies, mainly
concerning activity and diversity of some microbial
groups (bacteria and fungi), have been published. How-
ever, information on fire impact on microorganisms,

especially on diversity, is based on few studies. Most
studies assessed the impact of fire in forest ecosystems,
under specific vegetation andMediterranean, boreal, and
temperate climate, whereas other land uses and climatic
conditions are often not considered.

The data interpretation is very complex and involves the
comparison of the burnt soil with the unburnt one,
which requires the characterization of diverse microbial
aspects in relation to its environment, in other words,
studies with an ecological perspective. The laboratory

experiments simplify data interpretation, but they are
not fully comparable with field studies because of the
higher complexity of the latter (additional influence of
plant and climatic conditions). In the last years, studies
have been focused on the wildfire impact on soil after
the sampling at one fixed time, which makes the data
interpretation very difficult. In contrast, a small number
of heating laboratory studies and/or experimental fire
field investigations under controlled conditions, with
more concise conclusions, have been performed.

The different microbial properties (related to mass,
activity, and diversity) showed a different sensitivity to
detect fire impact as well as different trend over time
(immediate, short-, medium-, and long-term). In gen-
eral, microbial activity and biomass changes can be
transitory, and their values can reach prefire ones.
However, diversity changes seem to be maintained at a
longer time. Microbial soil diversity is often related to
soil capacity to recover after the stress and the main-
tenance of soil functionality.

Studies on susceptibility resilience of soil to fire events

(ability of soil to withstand the heat stress without losing
its quality and intrinsic capacity of soil to return to its
equilibrium state or a new state after the heat stress) in
relation to microbial diversity and hence soil quality
should be performed. This knowledge can help us un-
derstand the microbial response to fire and the subse-
quent implementation of rehabilitation and restoration
strategies at the short term, medium term, and long term.
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